Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058
Re Exam June 2019

Program: Electrical Engineering
Course code: PC-BTE301
Name of the Course: Electronic Circuits

Duration: 3 Hour

Maximum Marks: 100
Semester: III

Solve any five questions out of seven

$\begin{aligned} & \text { 2A } \\ & \text { (i) } \end{aligned}$	The following specifications are given for the dual input, balancedoutput differential amplifier : $\begin{aligned} & \mathrm{R}_{\mathrm{C}}=5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{B}}=100 \Omega, \mathrm{R}_{\mathrm{E}}=500 \Omega,+\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V},-\mathrm{V}_{\mathrm{EE}}=-10 \mathrm{~V}, \\ & \mathrm{~h}_{\mathrm{k}}=2 \mathrm{k} \Omega, \mathrm{~h}_{\mathrm{fc}}=50, \mathrm{~h}_{\mathrm{oc}}=5 \mu \mathrm{~S} . \text { Determine CMRR in dB. } \end{aligned}$	05	3	3	1.3.1
(ii)	With respect to differential amplifier explain the role of current mirror circuit.	05	3	2	1.3.1
$\begin{gathered} \hline \mathbf{B} \\ \text { (i) } \end{gathered}$	Determine the quiescent operating point ($I_{C Q} \& V_{C B Q}$) and $V_{C E}$ Cumof \& I_{C} Sarration for the circuit shown below. Given : $\beta=180, \mathrm{~V}_{\mathrm{cc}}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{B}}=$ $330 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{C}^{-}}=1100 \Omega, \mathrm{R}_{\mathrm{E}}=550 \Omega$	05	2	3	2.1.3
(ii)	In a certain JFET amplifier, $\mathrm{R}_{\mathrm{D}}-1 \mathrm{~K}, \mathrm{R}_{\mathrm{s}}-560, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$, $=4500 \mu \mathrm{~S}$,. If the source resistor is completely bypassed, determine the voltage gain. State the assumption made if any.	05	2	3	1.3.1
3	State whether the following statements are true/false. Justify the same.				
A	The input impedance of a MOSFET is of the order of several M Ω	05	2	5	1.3.1
B	An integrator works as high pass filter.	05	4	5	1.3.1
C	Voltage follower is used as buffer for impedance matching.	05	4	5	1.3.1
	Volage follower is used as buffr for impedance mathing.				
D	Onamn is suitable for amolification of d.c. signals.	05	4	5	1.3.1
4A	Explain following terms with respect to FET (i) Pinch off voltage (ii) Transconductance (iii) Drain resistance	10	2	2	1.3.1
B	Draw block diagram of opamp and explain each block.	10	4	2	

(Government Aided Autonomous Instituic)
Munshi Nagar. Andheri (W) Mumbai - 400058
Re-Examinations- May 2019

Program: Electrical Engineering
Course Code: BS-BTE301
Course Name: Applied Mathematics III

Duration: 3 hours
Maximum Points: 100
Semester: III

Instructions:

1. Question No 1 is compulsory.
2. Attempt any four questions out of remaining six questions.

Q.No.	Questions	Poi nts	CO	BL	PI
Q. 1					
(a)	Find Fourier Series Expansion of $f(x)=x^{2}, 0 \leq x \leq 2 \pi$	6	2	$\begin{aligned} & \hline \mathrm{ii}, \\ & \mathrm{iii} \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.1 \end{aligned}$
(b)	Evaluate $L^{-1}\left\{\frac{1}{s^{4}+4}\right\}$	6	1	iv,	$\begin{array}{\|l\|} \hline 2.4 \\ \hline .1 \end{array}$
(c)	Find Eigen values and corresponding Eigen vectors of A^{3}, where $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$	8	3	$\begin{aligned} & \mathrm{ii}, \\ & \mathrm{v} \end{aligned}$	$\begin{array}{\|l\|} \hline 2.4 \\ \hline 1 \end{array}$
Q. 2					
(a)	For the following matrix A , find two non-singular matrices P and Q such that PAQ is in the normal form, where $A=\left[\begin{array}{cccc} 2 & 1 & -3 & -9 \\ 3 & -3 & 1 & 3 \\ 1 & 1 & 1 & 3 \end{array}\right]$	6	3	i, ii	$\begin{aligned} & \hline 2.3 \\ & 1 \end{aligned}$
(b)	If $f(z)=u(x, y)+v(x, y)$ is analytic, then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|f(z)\|^{2}=4\left\|f^{\prime}(z)\right\|^{2}$	6	2	$\begin{aligned} & \mathrm{i}, \\ & \mathrm{iii} \end{aligned}$	$\begin{aligned} & 1.1 \\ & . \mathrm{I} \end{aligned}$

(c)	Using Convolution theorem, evaluate $L^{-1}\left\{\frac{(s+2)^{2}}{\left(s^{2}+4 s+8\right)^{2}}\right\}$	8	1	ii,	1.1
Q. 3					
(a)	Show that the set $S=\left\{1, x, \frac{3 x^{2}-1}{2}\right\}$ is Orthogonal over [-1,1]	6	2	i, ii	2.4 $.1$
(b)	If $L\{f(t)\}=\frac{s}{2 s^{2}-3 s-4}$ find $L\left\{e^{-4 t} f\left(\frac{t}{3}\right)\right\}$	6	1	$\mathrm{ii},$	$\begin{aligned} & 2.4 \\ & 1.1 \end{aligned}$
(c)	Using Cayley Hamilton Theorem, Find $A^{5}+3 A^{3}+7 A^{2}-2 A$ where $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$	8	3	$\begin{aligned} & \mathrm{iv}, \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1 \end{aligned}$
Q. 4					
(a)	Find an analytic function $f(z)=u(x, y)+i v(x, y)$ whose imaginary part is $v=\frac{x}{x^{2}+y^{2}}+\cosh x \cdot \cos y$	6	2	i, ii	1.1
(b)	Reduce the following matrix to normal form and find its rank $A=\left[\begin{array}{cccc} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ 3 & -6 & 3 & -4 \end{array}\right]$	6	3	$\mathrm{iv},$	$\begin{aligned} & 2.4 \\ & .1 \end{aligned}$
(c)	Using method of Laplace Transforms solve following differential equation $\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}-2 y=3 \cos 3 t-11 \sin 2 t, \text { where } y(0)=0, y^{\prime}(0)=6$	8	1	$\begin{aligned} & \mathrm{ii}, \\ & \mathrm{iii} \end{aligned}$	$\begin{aligned} & 2.4 \\ & .1 \end{aligned}$

5(a)	Determine constants a, b, c if $A=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & a \\ 2 & 1 & b \\ 2 & -2 & c\end{array}\right]$ is orthogonal	6	3	i, ii	2.4 .1
(b)	Evaluate $L^{-1}\left\{\frac{7 s-11}{(s+1)(s-2)^{2}}\right\}$	6	1	$\begin{aligned} & \mathrm{ii}, \\ & \mathrm{iii} \end{aligned}$	$\begin{array}{\|l\|} \hline 2.4 \\ .1 \end{array}$
(c)	Prove that the transformation $w=\frac{i z+2}{4 z+i}$ transforms the real axis in the z-plane into a circle in the w-plane. Find the center and radius of that circle.	8	2	$\mathrm{iv},$ \mathbf{v}	$\begin{aligned} & 1.1 \\ & .1 \end{aligned}$
Q. 6					
(a)	Evaluate $L\left\{t e^{-2 t} \sqrt{1+\sin 2 t}\right\}$	6	1	$\overline{i i},$	$\begin{aligned} & \hline 1.1 \\ & .1 \end{aligned}$
(b)	Obtain half range Fourier cosine series expansion of $f(x)=L x-x^{2}, \quad 0<x<L$	6	2	$\mathrm{iv},$	$\begin{aligned} & 2.4 \\ & .1 \end{aligned}$
(c)	Test the consistency of the following equations and solve them if they are consistent $\begin{aligned} & 4 x-2 y+6 z=8 \\ & x+y-3 z=-1 \\ & 15 x-3 y+9 z=21 \end{aligned}$	8	3	i, ii	$\begin{aligned} & 1.1 \\ & .1 \end{aligned}$
Q. 7					
(a)	If $\int_{0}^{\infty} e^{-2 t} \sin (t+\alpha) \cdot \cos (t-\alpha) d t=\frac{3}{8}$, find the value of α (Use Laplace Transforms)	6	1	i, ii	$\begin{aligned} & 1.1 \\ & .1 \end{aligned}$
(b)	Find fixed points of $w=\frac{-2+(2+i) z}{i+z}$	6	2	$\begin{aligned} & \mathrm{ii}, \\ & \mathrm{iii} \end{aligned}$	$\begin{aligned} & 2.4 \\ & .1 \end{aligned}$
(c)	Find Fourier Series Expansion of $f(x)=\left\{\begin{array}{lr} x-\pi & -\pi \leq x \leq 0 \\ \pi-x, & 0 \leq x \leq \pi \end{array}\right.$	8	3	$\mathrm{ii},$	$\begin{aligned} & 1.1 \\ & .1 \end{aligned}$

(Govermment Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
RE Exam - June 2019 Examinations

Program: Electrical
Course Code: PC-BTE303
Course Name: Digital Electronics

Duration: 3 hours
Maximum Points: 100
Semester: III

- Attempt any 5 out of 7 questions
- Make suitable assumptions wherever necessary

Q.No.	Questions	Points	CO	BL	PI
1 a .	Reduce the following using K-maps and implement the circuit $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\sum \mathrm{m}(0,1,4,5,6,7,9,15,17,21,22,24,25,29,31)$	10^{\prime}	2	3	2.4.1
1 b .	Design binary to gray code converter.	10	2	6	4.2.1
2a.	```Perform the following i. \(\quad(1011011)_{2}=(?)_{8}\) ii. \(\quad(\mathrm{FOC} 4)_{16}=(?)_{10}\) iii. \((10011)_{2}-(11001)_{2}\) using 1 's compliment method iv. \(\quad(46)_{10}=(?)_{\text {Xs-3 }}\) v. \(\quad(101)_{2} *(101)_{2}\)```	10	1	2	1.2.1
2 b .	Design a 5 bit comparator using a single IC 7485.	10	2	6	4.2.2
3a.	Design a 4 bit subtractor using IC 7483 and explain the working of the same.	10	2	6	4.2.1
3b.	Design a ripple mod 6 up counter using T flip flop having -ve edge triggered clock.	10	3	6	4.2.2
4a.	Explain the working of TTL NOR gate.	10	4	2	1.4.1
4b.	Implement 16:1 DeMux using 4:1 DeMux and additional gates (if required).	10	2	3	2.1.3
5 a .	Explain working of JK flip flop with Preset and Clear inputs.	10	3	2	1.4.1
5 b .	Do the following conversion: i. S-R flip flop to D flip flop ii. J-K flip flop to T flip flop	10	3	3	2.1.3

RE Exam - June 2019 Examinations

6 a.	Implement the following $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,3,5,7,8,9,10,12,13,15) \quad$ using single $4: 1$ Mux	10	2	3	2.1 .3
6b.	Suppose the receiver receives hamming code data as 1011111. Find out if there is any error or not and correct it if error is present.	10	1	4	2.4 .1
7a.	Explain the right and left shift registers	10	3	2	1.4 .1
7 b.	Write Short note on i. Memories ii. Ring Counter iii. Non weighted codes	10	$2,3,4$	2	1.4 .1

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

ODD SEM JUNE 2019 RE-EXAMINATIONS

Program: S. Y. B.Tech Electrical
Course Code: PC-BTE 304
Course Name: Electrical Machine-I

Duration: 3 Hours
Maximum Points: 100
Semester: III

Notes: 1. Question No 1 is compulsory.
2. Attempt any four questions out of remaining six.
3. Figures to the right indicate full marks and Assume suitable data if necessary.

Q.No.	Questions	Points	CO	BL	PI
Q. 1.	Explain the following. (Any Four) (a) Visualization of magnetic field produced by Bar Magnet. (b) B-H curve of magnetic material. (c) Significance of Back EMF in DC machine. (d) Motoring \& Generating action in DC machine. (e) Conditions for parallel operation of transformers.	20	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ \hline \end{array}$		
Q. 2 (a)	Derive the expression of torque as a partial derivative of stored energy with respect to angular position of a rotating element.	10	1		
$\text { Q. } 2$ (b)	Explain the difference between linear and nonlinear magnetic circuits and derive the expression of energy stored in the magnetic circuit.	$2+8$	1		
$\text { Q. } 3$ (a)	Explain the different transformer phasor groups and their arrangements in detail with one example of each group.	10	3		
Q. 3 (b)	Obtain the equivalent circuit parameters of $20 \mathrm{kVA}, 2500 / 250 \mathrm{~V}$, 50 Hz , single phase transformer referred to L.V. side \& H.V. side from the following test data: Draw the equivalent circuit referred to L.V. side.	10	3		
$\begin{aligned} & \text { Q. } 4 \\ & \text { (a) } \end{aligned}$	Two 100 kVA , single phase transformers are connected in parallel. Impedance of both transformers A \& B are $(0.5+\mathrm{j} 8) \Omega$ and $(0.75+j 4) \Omega$ respectively. Show how they will share a load of 180 kW at 0.9 power factor.	8	3		

ODD SEM JUNE 2019 RE-EXAMINATIONS

ODD SEM JUNE 2019 RE-EXAMINATIONS

Program: S. Y. B.Tech Electrical
Course Code: PC-BTE 304
Course Name: Electrical Machine-I

Duration: 3 Hours
Maximum Points: 100
Semester: III

Notes: 1. Question No 1 is compulsory.
2. Attempt any four questions out of remaining six.
3. Figures to the right indicate full marks and Assume suitable data if necessary.

Q.No.	Questions	Points	CO	BL	PI
	Q. 1.	Explain the following. (Any Four) (a) Visualization of magnetic field produced by Bar Magnet. (b) B-H curve of magnetic material. (c) Significance of Back EMF in DC machine. (d) Motoring \& Generating action in DC machine. (e) Conditions for parallel operation of transformers.	20	1	

ODD SEM JUNE 2019 RE-EXAMINATIONS

Q. 4 (b)	Discuss the uses of an autotransformer. Prove that for the same output and transformation ratio $\mathrm{k}=\mathrm{N} 2 / \mathrm{N} 1$, an autotransformer requires less copper than an ordinary two wincing transformer.	4 8	3		
$\begin{aligned} & \text { Q. } 5 \\ & \text { (a) } \end{aligned}$	A 200 kVA transformer has an efficiency of 98% at full load. If the maximum efficiency occurs at three quarters of full load, calculate the efficiency at half load. Assume negligible magnetizing current and pf 0.8 at all loads.	10	3		
$\text { Q. } 5$ (b)	Explain the transformer switching current transient phenomenon in detail with necessary graph \& figure.	10	3		
Q. 6 (a)	What is armature reaction in case of dc machine? Hence explain the demagnetizing and cross-magnetizing effect of it in detail.	$1+3+3$	2		
Q. 6 (b)	Draw and explain the torque speed characteristic of separately excited dc shunt machine.	3	2		
$\begin{aligned} & \text { Q. } 6 \\ & \text { (c) } \end{aligned}$	A 220 V , dc shunt motor takes 4 A at no-load when running at 700 rpm . The field resistance is 100Ω. The resistance of armature at standstill gives a drop of 6 volts across armature terminals when 10 A were passed through it. Calculate (a) speed on load (b) torque in $\mathrm{N}-\mathrm{m}$ and (c) efficiency. The normal input of the motor is 8 kW .	10	2		
$\begin{aligned} & \text { Q. } 7 \\ & \text { (a) } \end{aligned}$	What is the role of commutator in dc motor? Hence explain the process of commutation in detail.	$2+8$	2		
$\begin{aligned} & \text { Q. } 7 \\ & \text { (b) } \end{aligned}$	The armature winding of 4-pole, 250 V dc shunt motor is lap connected. There are 120 slots, each slot containing 8 conductors. The flux per pole is 20 mWb and current taken by the motor is 25 A . Ra and Rsh are 0.1Ω and 125Ω respectively. If the rotational losses amount to be 810 W find, (i) Armature torque (ii) Shaft torque and (iii) Efficiency of motor.	10	2		

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.

ODD SEM JUNE 2019 RE-EXAMINATIONS

Program: Electrical Engineering Course Code PC-BTE302

Name of the Course: Electrical Networks
Note: Question Nol is compulsory
Answer any 4 from the remaining six questions.
Assume suitable data if missing

$\left[\begin{array}{l} \mathrm{Q} \\ \mathrm{~N} \end{array}\right.$		Mar ks	CO	B	PI
1 a.	Determine the \mathbb{Z} parameters for the network.	5	4	3	1.3.1
b.	Determine $Z(s)$ the input impedance for the network. Find out the poles and zeros of $Z(s)$ and plot them on s plane	5	3	3	1.3.1
c.	Draw the oriented graph and obtain the incidence matrix	5	3	3	1.3 .1
d	Derive the expression for current and voltage across a capacitor and plot current and voltage as a function of time	5	4	5	2.4.3

2a. | In the network shown the switch is closed at $\mathrm{t}=0$ steady state |
| :--- |
| being reached before $\mathrm{t}=0$ find the current through inductor of |
| 3 l . |

(and

b.	A series RLC circuit is connected to a 200V ac supply. The current drawn by the circuit at resonance is 20A.The voltage drop across the capacitor is 5000 V at series resonance. Calculate the resistance and inductance if capacitance is $4 \mu \mathrm{~F}$, and calculate the resonant frequency.	10			

